北京2022年1月24日 /美通社/ -- 數(shù)據(jù)治理已經(jīng)發(fā)展了20多年,從最早的元數(shù)據(jù)管理,到后來(lái)的數(shù)據(jù)質(zhì)量管理,很多企業(yè)多年前都建設(shè)了名為數(shù)據(jù)治理的項(xiàng)目。但是,如果你去問(wèn)這些企業(yè),數(shù)據(jù)治理項(xiàng)目做得怎么樣?發(fā)揮了怎樣的業(yè)務(wù)價(jià)值和效益?你得到的答案往往不盡人意。很多企業(yè)建設(shè)好數(shù)據(jù)治理項(xiàng)目以后,就荒廢了沒(méi)有人使用。為什么會(huì)造成這樣的情況呢?究其原因是,其數(shù)據(jù)治就理項(xiàng)目只是面對(duì)IT人員的,并不是面對(duì)業(yè)務(wù)人員的。如果一個(gè)項(xiàng)目不是面對(duì)業(yè)務(wù)人員的,就難以發(fā)揮業(yè)務(wù)價(jià)值,業(yè)務(wù)人員無(wú)法使用,往往是不可能獲得成功的。因此,近年來(lái),國(guó)外興起了建設(shè)數(shù)據(jù)目錄的熱潮,不只是談數(shù)據(jù)治理,而是為了解決面向業(yè)務(wù)人員并體現(xiàn)業(yè)務(wù)價(jià)值的問(wèn)題。數(shù)據(jù)目錄就是為了幫助業(yè)務(wù)人員以及數(shù)據(jù)科學(xué)家,解決尋找數(shù)據(jù)、了解數(shù)據(jù)、優(yōu)化數(shù)據(jù)以及使用數(shù)據(jù)的難題。
什么是數(shù)據(jù)目錄?
很多人還不清楚什么是數(shù)據(jù)目錄,我來(lái)打個(gè)比方,我們用書(shū)來(lái)比喻數(shù)據(jù)。大家都知道圖書(shū)館的圖書(shū)目錄,我們過(guò)去進(jìn)到圖書(shū)館借書(shū),首先就要去查找圖書(shū)目錄。如果一個(gè)圖書(shū)館如圖1右下角那副照片那么亂的話,相信就連圖書(shū)管理員也無(wú)法找到想要的書(shū)吧?如果一個(gè)企業(yè)的數(shù)據(jù)庫(kù)管理得那么亂,那么就連數(shù)據(jù)庫(kù)管理員可能也無(wú)法找到數(shù)據(jù)了。如果一個(gè)圖書(shū)館如圖1右上角那樣的話,那說(shuō)明這個(gè)圖書(shū)館的書(shū),已經(jīng)分門(mén)別類(lèi)擺放整齊了,就像一個(gè)企業(yè)的數(shù)據(jù),結(jié)構(gòu)化的和非結(jié)構(gòu)化的,都分別在數(shù)據(jù)庫(kù)里或大數(shù)據(jù)平臺(tái)上,放得整整齊齊了。但是,對(duì)于圖書(shū)館來(lái)說(shuō),其主要任務(wù)是為讀者服務(wù)的,書(shū)擺放得整齊,需要借書(shū)的讀者就能借到他要的書(shū)嗎?我們都知道,那是不夠的,因?yàn)槿鄙僖粋€(gè)圖書(shū)目錄,就是圖1左邊的小抽屜。那個(gè)小抽屜里放的是一張一張的書(shū)卡,書(shū)卡上寫(xiě)了一些什么呢?往往有書(shū)的名字、書(shū)的簡(jiǎn)介、書(shū)的作者、書(shū)的出版年份,還有書(shū)的類(lèi)別,比如是物理類(lèi)的還是化學(xué)類(lèi)的;書(shū)的屬性,比如是工具書(shū)類(lèi)的還是文藝書(shū)類(lèi)的;書(shū)適合的年級(jí),比如一年級(jí)還是三年級(jí);最重要的是書(shū)的具體位置,它是在圖書(shū)館的哪一排的哪一層的哪一格里。有了這張書(shū)卡,我們就可以輕松地找到這本書(shū)并借到這本書(shū)了。我曾經(jīng)和一個(gè)大型企業(yè)的CIO聊天,這家企業(yè)20年前就建了數(shù)據(jù)倉(cāng)庫(kù),十年前又建了大數(shù)據(jù)平臺(tái)和數(shù)據(jù)湖,類(lèi)似數(shù)據(jù)治理的項(xiàng)目都建設(shè)過(guò)好幾期了。我問(wèn)CIO最近企業(yè)在IT方面開(kāi)展什么項(xiàng)目呢?CIO回答,最近招進(jìn)了好幾個(gè)數(shù)據(jù)科學(xué)家,打算開(kāi)展AI項(xiàng)目的建設(shè),但是遇到了困難。數(shù)據(jù)科學(xué)家們?cè)诠ぷ髦?,要?0%以上的時(shí)間在尋找數(shù)據(jù),而不是AI 建模。CIO問(wèn),為什么我們過(guò)去的數(shù)據(jù)治理項(xiàng)目,幫不了這些數(shù)據(jù)科學(xué)家呢?我就告訴這個(gè)CIO, 你們過(guò)去的數(shù)據(jù)治理項(xiàng)目,都是面向IT用戶的,不是面向業(yè)務(wù)人員的。如果你真的要幫助數(shù)據(jù)科學(xué)家方便快捷地找到他們要的數(shù)據(jù),你就要建設(shè)真正的數(shù)據(jù)目錄。
建立數(shù)據(jù)目錄的業(yè)務(wù)準(zhǔn)備
要建立真正的數(shù)據(jù)目錄,前期還是要做好一些業(yè)務(wù)方面的準(zhǔn)備工作的,就像建一張書(shū)卡一樣,書(shū)卡上的內(nèi)容,你先要準(zhǔn)備好。數(shù)據(jù)目錄一般有這樣一系列的業(yè)務(wù)域的元素:
建立數(shù)據(jù)目錄的技術(shù)難點(diǎn)
數(shù)據(jù)目錄的實(shí)現(xiàn)其實(shí)并不容易,否則,為什么那么多年來(lái),大多數(shù)的客戶還是在普通的數(shù)據(jù)治理層面,僅能夠面向技術(shù)人員,而不能面向業(yè)務(wù)人員呢?原因是:一個(gè)企業(yè)的業(yè)務(wù)域元素可能有幾萬(wàn)個(gè),而技術(shù)域的元數(shù)據(jù)可能有幾十萬(wàn)個(gè),幾萬(wàn)個(gè)與幾十萬(wàn)個(gè)的對(duì)應(yīng)關(guān)系,可比圖書(shū)館的書(shū)卡制作要復(fù)雜得多了。幾千本書(shū)你可以通過(guò)書(shū)卡,用人工的方法一一對(duì)應(yīng)。但幾萬(wàn)個(gè)業(yè)務(wù)域元素和幾十萬(wàn)個(gè)技術(shù)元數(shù)據(jù)的對(duì)應(yīng),全部要靠手工來(lái)實(shí)現(xiàn),幾乎是不可能完成的任務(wù)。這也是這么多年來(lái),數(shù)據(jù)目錄沒(méi)有很快發(fā)展起來(lái)的原因,直到最近AI技術(shù)和機(jī)器學(xué)習(xí)技術(shù)的引進(jìn),才幫助我們解決了這個(gè)問(wèn)題 -- 針對(duì)這個(gè)難題,IBM推出了Watson Knowledge Catalog。Watson是IBM響當(dāng)當(dāng)?shù)腁I名片,所以Watson Knowledge Catalog里,采用了大量的IBM企業(yè)級(jí)AI和機(jī)器學(xué)習(xí)的技術(shù),來(lái)幫助我們實(shí)現(xiàn)從業(yè)務(wù)到技術(shù)的關(guān)聯(lián)。
圖3展示了數(shù)據(jù)目錄各個(gè)元素之間的關(guān)系。其中,從業(yè)務(wù)術(shù)語(yǔ)到數(shù)據(jù)資產(chǎn)的那個(gè)紅色的箭頭,一直是數(shù)據(jù)目錄建設(shè)的難點(diǎn)。直到IBM采用了大量的AI和機(jī)器學(xué)習(xí)的方式,來(lái)幫助座自動(dòng)的關(guān)聯(lián),才解決了這個(gè)問(wèn)題。如果業(yè)務(wù)元數(shù)據(jù)或者Data Class定義了清晰的數(shù)據(jù)規(guī)則,那么,Watson Knowledge Catalog 就可以應(yīng)用AI的能力,進(jìn)行自動(dòng)關(guān)聯(lián)。如果并沒(méi)有定義清晰的規(guī)則,那么,我們可以用人工的方式,手工地進(jìn)行關(guān)聯(lián),同時(shí)Watson Knowledge Catalog會(huì)進(jìn)行機(jī)器學(xué)習(xí),自動(dòng)建立規(guī)則。當(dāng)你用手工多關(guān)聯(lián)幾次,自動(dòng)建立的規(guī)則越來(lái)越完善以后,系統(tǒng)就能通過(guò)AI實(shí)現(xiàn)自動(dòng)關(guān)聯(lián)了。
建立數(shù)據(jù)目錄的技術(shù)準(zhǔn)備
建立數(shù)據(jù)目錄,我們要了解企業(yè)內(nèi)部都有哪些數(shù)據(jù)?這些數(shù)據(jù)在哪里?數(shù)據(jù)質(zhì)量狀況是如何的?這些都可以使用Watson Knowledge Catalog的數(shù)據(jù)自動(dòng)發(fā)現(xiàn)功能去實(shí)現(xiàn)。Watson Knowledge Catalog 會(huì)自動(dòng)地發(fā)現(xiàn)數(shù)據(jù),自動(dòng)地連接數(shù)據(jù)源,并導(dǎo)入元數(shù)據(jù)。它還可以自動(dòng)地分析數(shù)據(jù)的質(zhì)量狀況,進(jìn)行數(shù)據(jù)質(zhì)量的打分,并形成數(shù)據(jù)質(zhì)量的圖表或儀表盤(pán)。數(shù)據(jù)質(zhì)量的打分,可以利用已經(jīng)定義的數(shù)據(jù)質(zhì)量規(guī)則,也可以允許業(yè)務(wù)人員用拼圖的方式,自定義數(shù)據(jù)質(zhì)量規(guī)則。這種定義方式有點(diǎn)像拼圖游戲,數(shù)據(jù)科學(xué)家可以用一些簡(jiǎn)單的規(guī)則如大于、小于、等于、AND、OR、包含、不包含等,自己拼出數(shù)據(jù)質(zhì)量規(guī)則, 并運(yùn)行,幾分鐘就可以得到數(shù)據(jù)質(zhì)量的報(bào)告。過(guò)去,數(shù)據(jù)科學(xué)家拿到一批數(shù)據(jù),為了要了解其數(shù)據(jù)質(zhì)量,往往要把需求提給IT部門(mén),IT部門(mén)還要請(qǐng)軟件開(kāi)發(fā)商來(lái)寫(xiě)程序,從而分析這批數(shù)據(jù)的數(shù)據(jù)質(zhì)量。從數(shù)據(jù)科學(xué)家提出需求,到拿到數(shù)據(jù)質(zhì)量報(bào)告,有的時(shí)候要幾周時(shí)間。這與我們目前的高效快節(jié)奏的社會(huì)完全不匹配。而如果數(shù)據(jù)科學(xué)家用拼圖方式,化5分鐘定義數(shù)據(jù)質(zhì)量規(guī)則,然后執(zhí)行它,15分鐘后,就能得到結(jié)果了。這種自助式的數(shù)據(jù)質(zhì)量探索能力,往往是數(shù)據(jù)科學(xué)家最希望的。
另外,元數(shù)據(jù)管理和血緣分析,也是數(shù)據(jù)目錄不可或缺的功能,他可以幫助數(shù)據(jù)科學(xué)家了解每一個(gè)數(shù)據(jù)從哪里來(lái),到哪里去,從而更好地理解業(yè)務(wù)。
數(shù)據(jù)目錄的使用
本文開(kāi)頭就提到,數(shù)據(jù)目錄建設(shè)的目的,是為了解決業(yè)務(wù)人員和數(shù)據(jù)科學(xué)家們發(fā)現(xiàn)數(shù)據(jù)和使用數(shù)據(jù)的難題。那么,為數(shù)據(jù)科學(xué)家和業(yè)務(wù)人員提供一個(gè)友好的數(shù)據(jù)發(fā)現(xiàn)和使用的界面就尤為關(guān)鍵了。 Watson Knowledge Catalog 可以將數(shù)據(jù)目錄,展示成一個(gè)知識(shí)圖譜。業(yè)務(wù)人員可以既通過(guò)類(lèi)似google的方式,通過(guò)搜索業(yè)務(wù)詞匯,找到他需要的數(shù)據(jù),也可以通過(guò)基于知識(shí)圖譜的發(fā)現(xiàn)和探索,很方便地圖形化地找到他要的數(shù)據(jù),并且可以自助地獲取這些數(shù)據(jù)。Watson Knowledge catalog自帶有數(shù)據(jù)隱私保護(hù)的功能。如果某個(gè)數(shù)據(jù)已經(jīng)被打上了隱私保護(hù)的標(biāo)簽,那么你就看不到這些數(shù)據(jù),這些數(shù)據(jù)會(huì)被打上星號(hào)或者漂白后再展示。數(shù)據(jù)科學(xué)家獲得了他要的數(shù)據(jù)后,還可以自助地優(yōu)化這些數(shù)據(jù)或者利用Watson Knowledge Catalog自帶的數(shù)據(jù)可視化工具,進(jìn)行數(shù)據(jù)圖形化展示,這些功能都極大地方便了數(shù)據(jù)科學(xué)家對(duì)數(shù)據(jù)的處理和分析。如果數(shù)據(jù)科學(xué)家需要進(jìn)行下一步的AI數(shù)據(jù)建模,還可以直接將這些數(shù)據(jù)不落地的送到我們的自動(dòng)化AI建模工具AutoAI進(jìn)行建?;蛘連I 平臺(tái)Cognos進(jìn)行報(bào)表展現(xiàn),真正實(shí)現(xiàn)數(shù)據(jù)目錄為業(yè)務(wù)人員服務(wù)的功能。
后記
智能數(shù)據(jù)目錄的建設(shè),可以使業(yè)務(wù)人員或者數(shù)據(jù)科學(xué)家,隨時(shí)找到他們需要的數(shù)據(jù),并且可以通過(guò)自助的方式,獲取這些數(shù)據(jù)。這個(gè)功能,是實(shí)現(xiàn)Data Fabric的第一步。建設(shè)好了智能的數(shù)據(jù)目錄,就為今后Data Fabric的建設(shè)打下了堅(jiān)實(shí)基礎(chǔ)。Data Fabric已經(jīng)成為Gartner在2022年最熱的IT趨勢(shì)的第二名。企業(yè)實(shí)現(xiàn)Data Fabric的架構(gòu)將是大勢(shì)所趨,讓我們先從建設(shè)智能的數(shù)據(jù)目錄開(kāi)始吧。